
Prof. Raghuveer Parthasarathy 
University of Oregon; Fall 2007 

NAME:     SOLUTIONS 

 
 
 
 

Physics 351 – Vibrations and Waves 
 

 
MIDTERM EXAMINATION 

 
 
Format: Closed book; no calculators.  Four problems. 
Time:  50 minutes.  (Suggested times: #1, 5 min; #2, 10 min., #3 & #4, each 15-20 min.) 
Write clearly! 
 
 
You may make use of the following if needed: 
 
For the steady state response of a damped oscillator driven at angular frequency ω: 
 
The amplitude (A) and phase offset (δ) are given by: 
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The power absorbed (averaged over one cycle):  
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As usual: 
m is the mass;  k is the spring constant.;  γ is the damping factor (“=b/m”) 
ω0 is the angular frequency of the undamped system. 
F0 is the amplitude of the driving force 

 
 

 
 



(1, 7 pts. total)  A driven oscillator.  The 
power-absorption versus angular 
frequency, )(P ω , for a driven oscillator is 
measured and plotted (see graph, right).   
 
(a, 2 pts.)  If the Q-factor of the system is 
increased, will the peak become narrower 
or wider?    [Just provide a one-word answer.] 
 
 
Answer: Narrower. 

 

 
 
 
(b, 5 pts.)  The driving is turned off and the oscillations freely decay from an initial value x0.  I’ve 
plotted x(t) – see below –  but due to an accident with scissors I chopped the numbers off the time 
scale of the graph.  Which of the time scales (A, B, C) shown below the plot is the correct one 
for this system?  Very briefly explain your answer. 
 
Answer: A.  The width (FWHM) 

of the )(P ω  curve is about 
0.2 rad/sec.  We know that the 
FWHM is equal to γ, the 
damping factor, and that the 
amplitude of free oscillations 

decays as /2te γ− .  Therefore 
the 1/e decay time is 2/γ ≈ 10 
seconds, corresponding to 
scale A.  

 
 

 



 
 
(2, 7 pts.) Oscillation in a sinusoidal potential.  Consider a particle of mass m subject to a 

potential energy 0( ) cos 2 xU x U π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where U0 and λ are constants and x  is position.  

Determine the angular frequency (ω) of small oscillations about any equilibrium position. 
 
 
 
Answer:  The equilibrium positions are the minima of U(x), which occur at x0 = 
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only at the odd-integer multiples. 
 
 All the equilibrium points are equivalent. 
 
 Taylor expanding U(x) around x0, 
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≈ + , limiting ourselves to small (x-x0) so that we 

can neglect higher-order terms. 
 
 As we are well aware, having done similar exercises before, this looks 

just like the potential energy function for a spring: 21( ) " "
2
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being deviation from equilibrium (i.e. like (x-x0) above) and spring constant 

k, except for an irrelevant offset (U(x0)).  Here, 
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(3, 8 pts.)  A damped, oscillating sphere.  Consider a sphere of radius r  and density ρ  attached 
to a spring of spring constant k .  Damping is due to a drag force F C r v= − ,where v is the (1-
dimensional) velocity and C is a constant that depends on viscosity and other parameters. 
(a, 2 pts.)  Determine the differential equation of motion of the sphere about its equilibrium 

position; express your equation in terms of r , ρ , C , k , and numerical constants only.  (A 
suggestion that may make (b) easier: write your differential equation as “ x + other terms = 0”.) 

(b, 6 pts.)  I choose a spring such that the system is critically damped.  Then, Mr. K. wanders in and 
replaces the sphere with one of the same density but a larger radius (leaving everything else 
unchanged).  Is the new system overdamped, underdamped, or critically damped?  (Hint: It isn’t 
necessary to first determine k , but if stuck you may find it useful to do so.) 

 
(a)  The forces acting on the mass are the spring force, kx−  and the drag 

force C rx− ; these equal mx  (Newton).  The mass of the sphere is 

ρ times its volume, 34
3

rπ .  Therefore  
34

3
r x kx Crxρ π = − − ,  which we 

can rewrite for later convenience as 
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(b) I’ll write two ways of solving this.  Both make use of the fact that the 
above differential equation is that of our usual damped oscillator, with 
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(Method 1)  The damping regime (over-, under-, critical) depends on the ratio 

02
γ
ω

.  How does this depend on r , if all other factors are constant?  From 

the above relations 2rγ −∝  and 3/2
0 rω −∝ , so 1/2

02
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−∝ .  Therefore if we 

start off being critically damped and increase r , 1/2r−  will decrease and 
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 will decrease; therefore we will have an underdamped system. 

 
(Method 2)  At critical damping, 02γ ω= , from which we can determine the k  

that satisfies this for 0r , the initial radius.  Using the above relations: 
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(4, 9 pts.)  Two monkeys.  If bent, a tree branch acts like a spring, i.e. pulling back with a force 
kx−  in response to a vertical deflection x . (See the figure.).  Friction within the wood is the 

dominant damping and is independent of whatever mass is hung from it.  (I.e. “b ” in F bx= −  
is always the same.)  One monkey (of mass 1m ) grabs the branch and hangs from it.  Hiding in 
the bushes (after installing energy sensors in the tree) we observe that 

 (i)  The monkey oscillates many times up and down before being appreciably damped. 
 
Then, a second monkey (of mass 2m ) grabs onto the first monkey (see figure).  We observe that: 
 (ii)  The two monkeys together also oscillate many times before being appreciably damped. 
 (iii)  The equilibrium branch deflection to which the system settles is three times greater 
than the deflection of the branch with just one monkey. 
 (iv)  The energy of the oscillations relative to the initial energy after one cycle of oscillation 

(i.e. 
0

( )E T
E , where T is the period) is half as large for the one-monkey system as for the pair of 

monkeys.  
 Based on these observations, determine 1m and 2m in terms of k and b.  (Hint: 

Observation (iii) alone is sufficient to reveal 1

2

m
m .)  If you don’t have time to simplify the math, 

put your answer into a form from which one could solve for the masses in terms of other, known, 
parameters by simple algebra; you’ll lose at most a point. 
 
Answer:  From (i) and (ii), we know we 
have a weakly damped system. 
 
From (iii):  At equilibrium, the 
gravitational force equals the “spring” 
force, so: mg kx= . 

 One monkey:  1 1m g kx=  

 Two monkeys:  ( )1 2 2m m g kx+ = . 

We’re told that 2 13x x= .  Dividing the 

above expressions, 2 2 1
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Now we consider the decay of the energy of oscillations.  We know that in 

general, 0( ) tE t E e γ−= , where /b mγ = .  At one cycle, 
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We’re told (obs. (iv)) that 1 2
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ADDITIONAL COMMENTS ABOUT THE MIDTERM – RP 
 
 
Overall:  I was expecting a mean score around 24; the actual values of the mean and median were both 17 (out of 31).  
As mentioned in class, I am disappointed.  The most worrying aspect is the poor performance on Problem 2 – involving 
oscillations in an “arbitrary” potential, which we’ve seen before and whose importance I have stressed. 
 I’ve had good conversations with several of you, and based on earlier impressions think that most of you are 
bright enough and hard-working enough to do considerably better than this exam would indicate.  (And, of course, 
several people did do very well on the exam.)  I hope you’ll study the solutions, and see me about any difficulties.  Also, 
you may wish to think about your “test taking” philosophies.  In many cases, I want to see that you can distill a setup or 
concept into its physical & mathematical essence – I care only slightly about the algebra of the solution, since I’m fairly 
sure that if you have time you can work through algebra properly.  If you understand what’s going on, this “distillation” 
should not be a long or painful process, and you should not let worries that you won’t have time to work out algebra 
somehow derail you from thinking clearly about the physics!  This is especially relevant to Problem 4 – many people 
have said they “only had 5 minutes” to work on it, but 5 minutes is more than enough time to set up the solution. 
 You may find the comments on particular problems below useful. 
 

 
 
 
 
Problem 1. 
 

We derived )(P ω in class and in the text, and I stressed repeatedly (at least 
3 times) that the most important (and the most interesting) thing about it is 
that the width of the curve equals γ , the damping factor – in other words, 
the resonant response and the free decay of an oscillator are intimately 
connected.  From this fact alone, you can simply “read off” that the width ≈ 
0.2 rad/sec, so decay time is roughly the reciprocal of this, indicating 
timescale “A” rather than “B” or “C”. 
 
Perhaps the weakest answer is to simply state that decay must be “fast,” 
without a number.  What does this mean?!  If one of the answer choices had 
been a scale from 0 to 10 microseconds, should we choose it? 
 
 
 
 



Problem 2. 
 
From Problem Set 2: 

(3, 7 pts.)  A rolling ball.  A ball of mass m moves in a one-dimensional landscape of hills and valleys with 

height h as a function of lateral position x being given by the function bx
x

axh +=)( , where a and b are 

positive constants.  The system is in a uniform gravitational field with acceleration g, as usual.  ... 
 
From the midterm study guide: 

• Know how to analyze the frequency of oscillation about equilibrium for objects subject to arbitrary potential 
energy functions. 

It amazes me that anyone would be surprised by this exam question, or 
incapable of doing it.  And, of course, I’m surprised that some people are 
still hazy on the concept of Taylor Series.  Also, some you seem unclear 
about what a “cosine” looks like. 
 
 
 
Problem 3. 
 
From the midterm study guide: 

• Damped oscillators.  ...  Know (remember) conditions for over-, under-, and critical-damping.. 
What determines the conditions for over-, under-, and critical damping?  The 

relative magnitudes of γ  and 0ω .  There’s nothing else.  So: examine the 

dependence on “r” of 
02

γ
ω

.  There are several ways to approach this (see the 

Solutions for two).  
 
 
 
Problem 4. 
 
There are several key things this problem tests. 
First: Can you turn a conceptual observation (e.g. “The equilibrium branch deflection to 

which the system settles is three times greater than the deflection of the branch with just one monkey”) 
into a mathematical statement? 

Second:  Do you understand what “equilibrium” means? 
Third:  Can you relate our general expressions concerning the decay of 

oscillator energy to this context? 
 
Just getting the “equilibrium” relation right is an easy 3 points. 
Recall, from Problem Set 2: 

(2, 4 pts. total)  A vertical mass & spring setup.  We’ve considered in class a horizontal 
setup of a mass on a spring, in which we could neglect the role of gravity.  Now, consider a 
vertical setup.  A mass m hangs from a massless spring of stiffness k, in a gravitational field 
whose acceleration is g.  Gravity leads to extension of the spring – at static equilibrium (i.e. if 
the mass isn’t moving), the gravitational force exactly balances the spring’s restoring force, 
and the spring is extended by some length.  Now consider a moving mass: Show that vertical 
oscillations of the mass about the equilibrium point... 

 



About the rest: Yes, I know you may have been running out of time, but simply 
turning the energetic observation into a mathematical relation, given our 
understanding of how energy decays (e.g. PS4 no. 6) without solving it at 
all, would have scored most of the points of the problem.  (This isn’t an 
algebra test!)  You should be able to quickly “distill” a statement into a 
mathematical relation – it takes little time, just understanding.  I admit 
that I’m puzzled about how best to convey this understanding.  Part of the 
reason I write verbose problem sets is for this exact reason – perhaps 
they’re not verbose enough... 
 
 


